Depleted uranium in modern weapons: mechanisms of toxic effect, potential risk to the health of the military personnel and the population in war conditions, and strategy for damage treatment

  • Authors: M.G. Prodanchuk, G.M. Balan, P.G. Zhminko, A.M. Stroy, V.A. Chernenko
  • UDC: 615.9:546.791
Download attachments:

L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety, Ministry of Health, Ukraine (State Enterprise), Kyiv, Ukraine

 

ABSTRACT. In recent decades, the incorporation of depleted uranium (DU) into modern armaments has been motivated by its low radioactivity and high chemotoxicity, properties which are advantageous in increasing penetration power. Currently, during the unprovoked full-scale aggression of Russia against Ukraine, European scientists are addressing the public and the scientific community, pointing out the potential danger of DU containing munitions, referring to the consequences of the war in Iraq, Kosovo, Bosnia and Herzegovina, as well as information about the probable use of such munitions by both Russia and our partners. The authors emphasize that the government of Ukraine, non-governmental public organizations and scientists should take the threat of the consequences of the use of DU munitions very seriously as soon as possible. This will help save the lives and health of Ukrainians, as well as arouse interest in generalizing the literature on the use of depleted uranium in modern weapons and its potential risks to the health of the military personnel and the population of contaminated territories.

Aim. To summarize the literature on the use of DU in modern weapons, possible routes of its entry into the body, mechanisms of toxic action, potential risk to the health of the military personnel and the population, and treatment strategies for those affected.

Materials and Methods. Open sources of public information and scientific literature data on the topic of the study were analysed. An analytical review of modern publications of scientific online libraries PubMed, MedLine, Elsevier on the use of DU in modern weapons, mechanisms of its toxic action, clinical manifestations of damage and treatment strategies for people exposed to its aerosols was conducted.

Results. In recent years, considerable attention has been paid to the study of health damage in combat conditions caused by inhalation of aerosols containing depleted uranium. Studies by American scientists have shown that a DU containing 120-mm projectile weighing approximately 4 kg and launched near ventilated armoured vehicles, such as Abrams, Bradley tanks, and other combat vehicles, generates 900–3100 g of aerosol containing depleted uranium.

In addition to the destructive power of conventional weapons, the chemical toxicity of the aerosol generated when using DU containing munitions can harm health, primarily through the respiratory system, because the easily soluble components are absorbed and enter the blood and internal organs, while the insoluble microparticles of depleted uranium settle in the lungs and remain there for a long time. The DU containing aerosol contaminates environmental objects. The consumption of DU contaminated food and water contributes to the development of chronic damage in the population. Experimental and clinical studies have revealed nephrotoxic, hepatotoxic, neurotoxic, immunotoxic effects, toxicity to the bones and reproductive system, as well as mutagenic and carcinogenic effects of depleted uranium. The International Agency for Research on Cancer classifies depleted uranium as a Group I carcinogen with limited evidence of carcinogenicity in humans and proven for experimental animals. The mechanism of toxic action of depleted uranium includes the formation of oxidative stress, interaction with proteins, metabolic and immunotoxic disorders, activation of inflammatory processes, genetic disorders, formation of toxic mitochondriopathy, and activation of apoptosis.

Conclusions. Analysis of current literature data on potential health risks for military personnel and the population, caused mainly by chemical toxicity of depleted uranium in war conditions, based on registered monitoring epidemiological and laboratory studies, indicates that DU may be one of the causes of the so-called Persian Gulf Syndrome in veterans of the war in Iraq, the Balkans and in the population of territories contaminated with DU. The development of this syndrome complex is explained by the consequence of pro-oxidant, inflammatory processes, the formation of toxic mitochondriopathy and damage to mitochondrial DNA in various types of cells and organs. In a number of works, along with the influence of depleted uranium, the impact of other factors (stress, explosive gases, etc.) is discussed. Emphasis is placed on the need to monitor the military’s bio environment for the DU content for timely detoxification.

 

Keywords: depleted uranium, chemotoxicity, mechanisms of toxic action, health risk, treatment and prevention of damage.

 

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ/REFERENCES

 

1. Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environ Int. 2020;145:106107. DOI:10.1016/j.envint.2020.106107.

2. Asic A, Kurtovic-Kozaric A, Besic L, Mehinovic L. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies. Environ Res. 2017;156:665–673. DOI:10.1016/j.envres.2017.04.032.

3. Shaki F, Zamani E, Arjmand A, Pourahmad J. A review on toxicodynamics of depleted uranium. Iran J Pharm Res. 2020;18:90–100. DOI:10.22037/ijpr.2020.113045.14085.

4. Eslami M, Vieira A, Al-Marashi I. Depleted uranium munitions and the Ukraine war: A warning against DU renaissance. Front Polit Sci. 2024;6. DOI:10.3389/ fpos.2024. 1387183.

5. Fuller M. Depleted uranium in Ukraine: Lessons from the Balkans and Iraq. Peace Rev. 2024;36(1):53–62. DOI:10.1080/10402659.2023.2296085.

6. Copp T. A look at the uranium-based ammo the UK will send to Ukraine. Associated Press. 2024 Mar 24. Available from: https://apnews.com/article/depleted-uranium-ukrainerussia-tanks-a92a4784dfcbd1f221813154b7f3a8e.

7. Саламаха М. BBC News Україна звернулась за коментарем щодо небезпек снарядів зі збідненим ураном для військових фахівців. DW. 2022. Доступно на: https://www.dw.com/uk/snaradi-zi-zbidnenim-uranom-dlaukraini-so-pro-nih-treba-znati/a-65103957. [Salamakha M. BBC News Ukraine asked for comment on the dangers of depleted uranium shells for military specialists. DW. 2022. Available from: https://www.dw.com/uk/snaradi-zizbidnenim-uranom-dla-ukraini-so-pro-nih-treba-znati/a-65103957].

8. Kukin T. Ukraine update: What we know about DU in Ukraine so far? ICBUW. 2024 Aug 6. Available from: https://www.icbuw.eu/1708-2.

9. Faulconbridge G. Ukraine war, already with up to 354,000 casualties, likely to last past 2023. Reuters. 2023 Apr 13. Available from: https://www.reuters.com/world/europe/ukraine-war-already-with-up-354000-casualties-likelydrag-us-documents-2023-04-12.

10. Gozzi L. Ukraine war: UK defends sending depleted uranium shells after Putin warning. BBC News. 2023 Mar 21. Available from: https://www.bbc.com/news/world-europe-65032671.

11. Bruess E, Snell J, Goswami M. War and the environment: the disturbing and under-researched legacy of depleted uranium weapons. Bull At Sci. 2020. Available from: https://www.cadu.org.uk/info/campaign/16_1.htm.

12. Lin Y, Wu V. Uranyl binding to proteins and structuralfunctional impacts. Biomolecules. 2020;10:457–60. DOI:10.3390/biom10030457.

13. Carugo O. Structural features of uranium-protein complexes. J Inorg Biochem. 2018;189:1–6. doi:10.1016/j.jinorgbio.2018.08.014.

14. Mehra R, Kaur S. Biokinetic modelling and risk assessment of uranium in humans. In: Gupta DK, Walther C, editors. Uranium in Plants and the Environment. Cham: Springer; 2020. DOI:10.1007/978-3-030-14961-1_11.

15. Chawla M, Singh J, Kaushik RD. Nuclear reactor fuel: Uranium toxicological mechanism and emerging healthrisks. Hazard Chem Char. 2025;50:685–98. DOI:10.1016/B978-0-323-92535-0.00066-9.

16. Gao N, Huang Z, Liu H, Hou J, Liu X. Advances on the toxicity of uranium to different organisms. Chemosphere. 2019;237:124548. DOI:10.1016/j.chemosphere.2019.124548.

17. Gueguen Y, Frey-Forgues M. Review of knowledge of uranium-induced kidney toxicity for the development of an adverse outcome pathway to renal impairment. Int J Mol Sci. 2022;23(16):8497. DOI:10.3390/ijms23084997.

18. Monleau M, De Méo M, Paquet F, Chazel VR, Dumenil GR, Donnadieu-Claraz M. Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol Sci. 2015;89(1):287–95. DOI:10.1093/toxsci/ kfj010.

19. Sangeetha Vijayan P, Rekha PD, Arun AB. Role of PI3KAkt and MAPK signaling in uranyl nitrate-induced nephrotoxicity. Biol Trace Elem Res. 2019;189:405–11. DOI:10.1007/s12011-018-1505-9.

20. Buttterick TA, Trembley JH, Hocum Stone LL, et al. Gulf War Illness-associated increases in blood levels of interleukin 6 and C-reactive protein: Biomarker evidence of inflammation. BMC Res Notes. 2018;11:816. DOI:10.1186/s13104-019-4855-2.

21. Bolt AM, Medina S, Lauer FT, Liu KJ, Burchiel SW. Minimal uranium immunotoxicity following a 60-day drinking water exposure to uranyl acetate in male and female C57BL/6J mice. Toxicol Appl Pharmacol. 2019;372:33–39. DOI:10.1016/j.taap.2019.04.003.

22. Trageser KJ, Sebastian-Valverde M, Naughton SX, et al. The innate immune system and inflammatory priming: Potential mechanistic factors in mood disorders and Gulf War illness. Front Psychiatry. 2020;11:704–712. DOI:10.3389/fpsyt.2020.00704.

23. Schilz JR, Dashner-Titus EJ, Simmons KA, et al. The immunotoxicity of natural and depleted uranium: From cells to people. Toxicol Appl Pharmacol. 2022;454:116252. DOI:10.1016/j.taap.2022.116252.

24. Yu L, Li W, Chu J, Chen C, Li X, Tang W. Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase. Toxicol. 2021;271:116377. DOI:10.1016/j.envpol.2020.116377

25. Holmes AL, Joyce K, Xie H, Falank C, Hinz JM, Wise SR Jr. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protection against chromosome aberrations, but increases the yield of complex aberrations. Mutat Res. 2014;762:1–9. DOI:10.1016/j.mrfmmm.2014.02.001.

26. Trivedi MS, Abreu MM, Sarria L, Rose N, Ahmed N, et al. Alterations in DNA methylation status associated with Gulf War Illness. DNA Cell Biol. 2019;38(6):561–571. DOI:10.1089/dna.2018.4469.

27. Hu Q, Zheng J, Xu XN, Gu C, Liu Y. Uranium induces kidney apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. Environ Toxicol. 2022;37(4): 899–909. DOI:10.1002/tox.23453.

28. Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cell pyroptosis in culture involved in ROS/NLRP3/caspase-1 signaling. Free Radic Res. 2022;56(1):40–52. DOI:10.1080/10715762.2022.2032201.

29. Homma-Takeda S, Numako C, Kitahara K, Yoshida T, Oikawa M, Terada Y, et al. Phosphorus localization and its involvement in the formation of concentrated uranium in the renal proximal tubules of rats exposed to uranyl acetate. Int J Mol Sci. 2019;20(19):4677. DOI:10.3390/ijms20194677.

30. Bontemps-Karcher A, Magneron V, Conquet L, Elie C, Gloaguen C, Kereselidze D, et al. Renal adaptive response to exposure to low doses of uranyl nitrate and sodium fluoride in mice. J Trace Elem Med Biol. 2021;64:126708. DOI:10.1016/j.jtemb.2020.126708.

31. Sangeetha Vijayan P, Rekha PD, Dinesh U, Aru AB. Biochemical and histopathological responses of the Swiss albino mice treated with uranyl nitrate and its recovery. Ren Fail. 2016;38(9):770–775. DOI:10.3109/0886022X.2016.1160248.

32. Sarhan HKA. Uranium and lead intoxication hazards induce hepatotoxicity in rats: Biochemical, histochemical and histopathological studies. Egypt J Chem. 2021; 64(8):4545–4556. DOI:10.21608/ejchem.2021.82995. 4079.

33. Dincourt C, Legrand M, Dublineau I, Lestaevel P. The neurotoxicology of uranium. Toxicol Appl Pharmacol. 2015;337:58–71 DOI:10.1016/j.tox.2015.08.004.

34. Vellingiri B. A deeper understanding about the role of uranium toxicity in neurodegeneration. Environ Res. 2023;233:116430. DOI:10.1016/j.envres.2023.116430

35. Legrand M, Elie C, Stefani J, Florès N, Culeux C, Delissen O, et al. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure. Neurotoxicology. 2016;52:34–45. DOI:10.1016/j.neuro.2015.10.007.

36. Alshelh Z, Albrecht DS, Bergan C, et al. In-vivo imaging of neuroinflammation in veterans with Gulf War Illness. Brain Behav Immun. 2020;87:498–507. DOI:10.1016/ j.bbi.2020.01.020.

37. Wang S, Ran Y, Lu B, Li J, Kuang H, Gong L, et al. A review of uranium-induced reproductive toxicity. Biol Trace Elem Res. 2020;196(1):204–213. DOI:10.1007/s12011-019-01920-2.

38. Legendre A, Elie C, Ramambason C, Manens L, Souidi M, Froment P, et al. Endocrine effects of lifelong exposure to low-dose depleted uranium on testicular functions in rats. Toxicol. 2016;368–369:58–68. DOI:10.1016/j.tox.2016.08.014.

 

39. Alonzo F, Trijau M, Plaire D, Billot E. A toxicokinetic–toxicodynamic model with a transgenerational perspective to explain toxicity changes over generations (in Daphnia magna exposed to depleted uranium). Sci Total Environ. 2024;923:169845. DOI:10.1016/j.scitotenv.2023.169845.

40. Gritsaenko T, Pierrefitte-Carle V, Lorivel T, Breuil V, Carle GF, Santucci D, et al. Natural uranium impairs the differentiation and the resorbing function of osteoclasts. Biochim Biophys Acta Gen Subj. 2017;1861(4):715–726. DOI:10.1016/j.bbagen.2017.01.008.

41. McDiarmid MA, Gaitens JM, Hines S, et al. Surveillance of depleted uranium-exposed Gulf War veterans: More evidence for bone effects. Health Phys. 2021;120:671–682. DOI:10.1097/HP.0000000000001395.

42. Miller AC. Depleted uranium: Toxicology and health consequences. In: General, Applied and Systems Toxicology. 2011. p. 3021–3042. DOI:10.1002/9780470744307.gat136.

43. Burgio S, Gennaro V, Manna OM, et al. Implication of depleted uranium in human carcinogenesis with a glance to implementation of novel and reliable experimental models. J Biol Res. 2024;2:1826-883. Article 12663. DOI:10.4081/jbr. 2024.12663.

44. Ilić D, Videnović G, Kozomara R, Radaković S, Vlahović Z, Matvijenko V, Živković S. Non-melanoma skin cancer in Serbia 1999–2015 – the need for national prevention strategy and control. Vojnosanit Pregl. 2020;77(11):1154–1160. DOI:10.2298/VSP181112201I.

45. Bogers RP, van Leeuwen FE, Grievink L, Schouten LJ, Kiemeney LA, Schram-Bijkerk D. Cancer incidence in Dutch Balkan veterans. Cancer Epidemiol. 2013;37:550–555. DOI:10.1016/j.canep.2013.04.005.

46. Stojanovic MM, Rancic NK, Andjelkovic MR, Ignjatovic AM, Stojanovic DR, Mitic LV, Mitic MV. Temporal changes in incidence rates of the most common gynecological cancers in the female population in Central Serbia. Medicina (Kaunas). 2022;58(2):306. DOI:10.3390/medicina 58020306.

47. Latifi-Pupovci H, Selmonaj M, Ahmetaj-Shala B, et al. Incidence of haematological malignancies in Kosovo: A post-uranium war concern. PLoS One. 2020;15(5): e0232063.DOI:10.1371/journal.pone.0232063.

48. Strand LA, Martinsen JI, Borud EK. A 5-year continued follow-up of cancer risk and all-cause mortality among Norwegian military peacekeepers deployed to Kosovo during 1999–2016. Mil Med. 2020;185(1–2):e239–e243. DOI:10.1093/milmed/usz179.

49. Gennaro V, Negrisolo O, Bolgan L, et al. Incidence of malignant tumours (1996–2012) in young Italian soldiers sent on mission abroad. Preliminary analysis of the data of the Parliamentary Enquiring Commission on depleted uranium and vaccines (CUC). Epidemiol Prev. 2013;38(43–48):48–54. DOI:10.19191/EP19.1.A002.

50. Basheer N, Abdelkafi Z, Ashwood M. Quantitative uranium levels in blood samples of cancer patients collected from different regions in Iraq. Radiat Phys Chem. 2024; 223:111975. DOI:10.1016/j.radphyschem.2024. 111975.

51. Surdyk S, Itani M, Al-Lobaidy M, Kahale LA, Farha A, Dewachi O, et al. Weaponised uranium and adverse health outcomes in Iraq: A systematic review. BMJ Glob Health. 2021;6(2):e004166. DOI:10.1136/bmjgh-2020-004166.

52. Cocco P. Cancer incidence among the NATO peacekeeping forces in Bosnia and Kosovo: A systematic review and meta-analysis. Mil Med. 2022;13:e2022011. DOI:10.23749/mdl.v113i1.12600.

53. Ran Y, Wang S, Zhao Y, Li J, Ran X, Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosols. J Environ Radioact. 2020;222:106357. DOI:10.1016/j.jenvrad.2020.106357.

54. Bjørklund G, Pivina L, Dadar M, Semenova Y, Rahman MM, Chirumbolo S, et al. Depleted uranium and Gulf War Illness: Updates and comments on possible mechanisms behind the syndrome. Environ Res. 2020;181:108927. DOI:10.1016/j.envres.2019.108927.

55. Fox A, Helmer D, Tseng CL, Patrick-DeLuca L, Osinubi O. Report of autonomic symptoms in a clinical sample of veterans with Gulf War Illness. Mil Med. 2018;183(3–4):179–185. DOI:10.1093/milmed/usx052.

56. McDiarmid MA, Gucer P, Centeno JA, et al. Semen uranium concentrations in depleted uranium exposed Gulf War veterans: Correlations with other body fluid matrices. Biol Trace Elem Res. 2019;190:45–51. DOI:10.1007/s12011-018-1527-3.

57. Cazoulat A, Lecompte Y, Bohand S, Castagnet X, Laroche B. Urinary uranium analysis results on Gulf War or Balkans conflict veterans. Pathol Biol. 2008;56:77–83. DOI:10.1016/j.patbio.2007.09.030.

58. Al-Hamzawi AA, Jaafar MS, Tawfiq NF. Uranium concentration in blood samples of Southern Iraqi leukemia patients using CR-39 track detector. J Radioanal Nucl Chem. 2014;299:1267–1272. DOI:10.1007/s10967-013-2808-0.

59. Sudarević B, Radoja I, Simunović D, Kuvezdić H. Trends in testicular germ cell cancer incidence in Eastern Croatia. Med Arch. 2014;68(1):52–58.

60. Hao Y, Gao R, Zhang Y, Ran Y, Liu J, Dai X, et al. Effect of a novel polyethylene glycol compound on lung lavage in dogs after the inhalation of depleted uranium dust. Int J Radiat Biol. 2018;94(5):462–471. DOI:10.1080/09553002. 2018.1446228.

61. Joksic A, Katz SA. Chelation therapy for treatment of systemic intoxication with uranium: A review. J Toxicol Environ Health A. 2015;78(3):1479–1488. DOI:10.1080/10934529.2015.1071154.

 

Стаття надійшла до редакції 25 лютого 2025 р.

The article was received by the editors on February 25, 2025.